## The Proximal Imidazole Effect on Manganese(III)-Cyclam Complex

Eiichi KIMURA,\*† Mitsuhiko SHIONOYA, Tsuyoshi YAMAUCHI, and Motoo SHIRO††
Department of Medicinal Chemistry, Hiroshima University School of Medicine,
Kasumi 1-2-3, Minami-ku, Hiroshima 734
†Coordination Chemistry Laboratories, Institute for Molecular Science,
Nishigo-naka, 38, Myodaiji, Okazaki 444
††Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553

The synthesis, X-ray structure, and chemical properties are reported of a new 5 co-ordinate Mn(III) complex with imidazole-pendant cyclam, which has been found to be an efficient catalyst for alkene epoxidation.

The crucial role of manganese in several biological systems including manganese-requiring redox-active enzymes and Photosystem  $\Pi^{1)}$  has been stimulating active researches in the biomimetic chemistry of manganese, in particular of porphyrin complexes.<sup>2)</sup>

A saturated macrocyclic N<sub>4</sub> ligand cyclam (= 1,4,8,11-tetraaza-cyclotetradecane) forms a square planar complex **1** with high-spin  $d^4$  Mn(III),<sup>3a)</sup> which, like porphyrin complexes, appears to be useful as catalysts for redox reactions, but few studies have been undertaken. Recently, a bis( $\mu$ -oxo) [(cyclam)MnO]2<sup>3+</sup> complex was presented as a potential model for multi-electron redox catalyst.<sup>3b)</sup> It is of interest to see whether **1** can also work as an catalyst for olefin epoxidations, as extensively studied Mn(III)-porphyrin<sup>2)</sup> and Ni(II)-cyclam complexes<sup>4)</sup> in relevance to cytochrome P-450.<sup>5)</sup> We were also interested in whether **1** is activated with proximal donors in these epoxidations, like the porphyrin system.<sup>2)</sup>

A recently explored cyclam with an appended imidazole **2**<sup>6)</sup> may be a suitable ligand to check the proximal imidazole effect. Herein we communicate synthesis, X-ray crystal structure, chemical properties, and catalytic activity in alkene epoxidation of a new Mn(III) complex **3**.

The ligand **2** (0.1 mmol) and equivalent  $Mn^{II}(ClO_4)_2 \cdot 8H_2O$  were stirred under air in MeOH at room temperature for 3 h. After addition of a small amount of conc. HClO<sub>4</sub> to the resulting light-brown solution, green crystals were obtained. Recrystallization from aqueous HClO<sub>4</sub> solution yielded green needles  $[Mn^{III}(2)(ClO_4)](ClO_4)_2$  (**3a**), and from aqueous HCl-HClO<sub>4</sub> solution green prisms  $[Mn^{III}(2)(Cl)](ClO_4)_2$  (**3b**). The UV-visible spectrum of **3a** showed ligand to  $Mn^{III}$  charge transfer absorption at  $\lambda_{max}$  268 ( $\epsilon$  7860 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>) and *d-d* transition at 350 nm (sh  $\epsilon$  1600) in pH 3.5 H<sub>2</sub>O, which are very similar to those of other  $d^4$  Mn(III) complexes reported in a tetragonally distorted environment (e.g.  $\lambda_{max}$  273 ( $\epsilon$  10500) and 340 nm (sh  $\epsilon$  2300) for  $1 \cdot (ClO_4)_3$ ). The changes in the molar extinction coefficients ( $\epsilon$ ) are probably due to the electronic transitions and  $\epsilon$  being sensitive to minor steric distortions away from a perfect octahedron. Some evidence of steric distortions due to the intramolecular imidazole co-ordination was observed in the X-ray crystal structure.

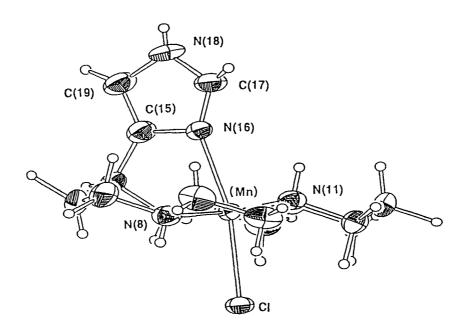



Fig. 1. ORTEP drawing of complex **3b**, side-on view. Atoms are drawn with 30% probability ellipsoids.

The X-ray crystal structure of **3b** represents the first square planar cyclam complex of Mn(III) with a close imidazole co-ordination from an axial site (Fig. 1).<sup>8)</sup> The Mn(III) atom sits in the cyclam N<sub>4</sub> plane with the imidazole N(16) and chloride ion at axial positions. The imidazole ring stands vertically to the cyclam N<sub>4</sub> plane. The metal-macrocyclic nitrogen bond

lengths Mn-N(1), Mn-N(4), Mn-N(8), and Mn-(N11) are 2.039(4), 2.039(4), 2.044(4), and 2.029(4) Å, respectively. In **1** with hexamethyl substituents,<sup>3c)</sup> the mean Mn<sup>III</sup>-N bond is 2.06 Å. There is a large difference between the axial [Mn-N(16) and Mn-Cl(1) are 2.277(4) and 2.463(2) Å, respectively] and equatorial Mn-N bond distances. This reflects the *Jahn-Teller* distortion for a high-spin  $d^4$  ion.<sup>9)</sup> Earlier, we reported a high spin  $d^8$  nickel(II) complex of **2** (the sixth ligand is CH<sub>3</sub>CN) with a closer octahedral structure,<sup>6)</sup> where the equatorial Ni<sup>II</sup>-cyclam N bond distances (mean 2.07 Å) are a little longer, and the axial Ni<sup>II</sup>-N(imidazole) (2.098 Å) and Ni<sup>II</sup>-N(acetonitrile) (2.132 Å) bond distances are much shorter.

The imidazole ligation (in **3a**) does not contribute to stabilization of the Mn<sup>III</sup> state with respect to Mn<sup>II</sup>, as found for the porphyrin complexes.<sup>10)</sup> Cyclic voltammetries of **3a** in H<sub>2</sub>O (0.1 mol dm<sup>-3</sup> NaClO<sub>4</sub>, pH 3.6, 25 °C) showed a quasi-reversible redox wave at  $E_{1/2}$  +0.09 V vs. saturated calomel electrode (S.C.E.) ( $\Delta E_p$  75 mV, scan rate; 500 mV s<sup>-1</sup>) for Mn<sup>III/II</sup> couple at a gold electrode. Under the same condition the Mn<sup>III/II</sup>-cyclam has a value of -0.04 V vs. S.C.E. **3a** is more easily reduced than **1**, probably due to the  $\pi$ -acceptability of imidazole at an axial position. At slower scan rates below 100 mV s<sup>-1</sup>, the redox couple became more irreversible to a single reduction wave, indicating the lability of the electrochemically generated Mn<sup>II</sup> state in the aqueous solution. In both cases, no metal-centered oxidation waves were seen before the solvent limit (ca. +1V).

| Table 1. | Comparison of Catalytic Epoxidation of trans-Stilbene             |
|----------|-------------------------------------------------------------------|
|          | with Macrocyclic Mn <sup>III</sup> and Ni <sup>II</sup> Complexes |

| Oxidant | Catalyst <sup>a</sup> ) | Turnovers for trans-epoxideb) |
|---------|-------------------------|-------------------------------|
| PhIO    | 1                       | 7.6                           |
|         | 3 a                     | 9.4                           |
|         | Cyclam-Ni <sup>II</sup> | 1.6                           |
| NaClO   | 1                       | 12                            |
|         | 3 a                     | 20                            |
|         | Cyclam-NiII             | 14                            |

a) Perchlorate salts were used for both Mn(III)- and Ni(II)-cyclam complexes.

In a typical experiment of the oxidation catalysis using NaClO, 0.16 mmol *trans*-stilbene, 4 µmol catalyst, and 6 µmol benzyl tri-n-butylammonium chloride (phase-transfer-catalyst) in 0.4 ml of CH<sub>2</sub>Cl<sub>2</sub> were stirred vigorously with 0.8 ml of 0.74 mol dm<sup>-3</sup> NaClO (domestic bleach, pH 12.7) at 25 °C for 1 h. For the PhIO reaction, 0.4 mmol *trans*-stilbene, 1.0 mmol PhIO, 2 µmol catalyst were stirred in 2 ml of anhydrous CH<sub>3</sub>CN under Ar at 25 °C

b) Mole of product / mole of catalyst in 1 h. Other minor products (PhCHO and unidentified products) were also detected.

for 1 h. As a result, a novel catalyst **3a** more efficiently catalyzes the oxygen atom transfer from both PhIO and NaClO to the substrate than unsubstituted Mn(III)-cyclam **1** and Ni(II)-cyclam complexes, <sup>4a-c)</sup> as shown in Table 1. The proximal imidazole increases the catalytic turnover, as found for porphyrins. <sup>11)</sup> Although we tentatively postulate an oxenoid intermediate, (*trans*-cyclam)MnV=O species, like the (porphyrin)MnIV or V=O<sup>12)</sup> and (cyclam)NiIV=O, <sup>4a,c)</sup> detailed mechanistic studies are currently in progress.

Further work of the rigid and well-defined Mn(III) donor pendant-cyclam complexes will increase knowledge of the Mn co-ordination chemistry and lead to better understanding of the catalytic activities of Mn(III)-porphyrin complexes.

## References

- 1) K. Wieghardt, *Angew. Chem.*, **101**, 1179 (1989); J. B. Vincent, and G. Christou, *Adv. Inorg. Chem.*, **33**, 197 (1989); G. Brudvig and R. H. Crabtree, *Prog. Inorg. Chem.*, **37**, 99 (1989).
- 2) I. Tabushi, Coord. Chem. Rev., 86, 1 (1988).
- 3) a) P. K. Chan and C. K. Poon, *J. Chem. Soc., Dalton Trans.*, **1976**, 858; b) K. L. Brewer, M. Calvin, R. S. Lumpkin, J. W. Otvos, and L. O. Spreer, *Inorg. Chem.*, **28**, 4446 (1989); c) T. W. Hambly, G. A. Lawrance, D. F. Sangster, and C. B. Ward, *Aust. J. Chem.*, **40**, 883 (1987).
- 4) a) J. D. Koola and J. K. Kochi, *Inorg. Chem.*, **26**, 908 (1987); b) H. Yoon and C. J. Burrows, *J. Am. Chem. Soc.*, **110**, 4087 (1988); c) J. F. Kinneary, J. S. Albert, and C. J. Burrows, *ibid.*, **110**, 6124 (1988).
- 5) "Metal Ion Activation of Dioxygen," ed by T. G. Spiro, Wiley, New York (1980); F. P. Guengerich, and T. L. MacDonald, Acc. Chem. Res., 17, 9 (1984); J. T. Groves, S. Krishnan, G. E. Avaria, and T. E. Nemo, Adv. Chem. Ser., No. 191, 277 (1980).
- 6) E. Kimura, M. Shionoya, T. Mita, and Y. Iitaka, J. Chem. Soc., Chem. Commun., 1986, 1712.
- 7) Elementary analyses (C, H, N) of these metal complexes were satisfactory.
- 8) Crystal Data for **3** (X = Cl): space group  $P\overline{1}$ ; a = 10.220(1), b = 11.999(1), c = 9.615(1) Å,  $\alpha = 101.24(1)$ ,  $\beta = 96.17(1)$ ,  $\gamma = 97.42(1)^\circ$ ; U = 1136 Å<sup>3</sup>; Z = 2;  $D_c = 1.624$  g cm<sup>-1</sup>;  $\mu(\text{Cu}K_{\alpha}) = 87.0$  cm<sup>-1</sup>; No. of intensities mesured, 3869; no.of data, 3437 ( $|F_0| > 4\sigma(F_0)$ );  $R(R_W) = 0.066(0.099)$ .
- 9) F. A Cotton and G. Wilkinson, Adv. Inorg. Chem., 1980, 678.
- 10) S. L. Kelly and K. M. Kadish, *Inorg. Chem.*, 21, 3631 (1982).
- 11) B. Meunier, M-E. de Carvalho, O. Bortolini, and M. Momenteau, *Inorg. Chem.*, 27, 161 (1988).
- 12) J. T. Groves and M. K. Stern, J. Am. Chem. Soc., 109, 3812 (1987).